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Abstract— Humanoid robots are promising approach to au-
tomating patient interviews routinely conducted by medical
staff. Their human-like appearance enables them to use the
full gamut of verbal and behavioral cues that are critical to a
successful interview. On the other hand, anthropomorphism can
induce expectations of human-level performance by the robot.
Not meeting such expectations degrades the quality of inter-
action. Specifically, humans expect rich real-time interactions
during speech exchange, such as backchanneling and barge-
ins. The nature of the patient interview task differs from most
other scenarios where task oriented dialogue systems have been
used, as there is increased potential of engagement breakdown
during interaction. We describe a dialogue system architecture
that improves the performance of humanoid robots on the
patient interview task. Our architecture adds a nested inner
real-time control loop to improve the timeliness of the robot’s
responses based on the notion of “stance”, an elaboration of
the concept of a “turn”, common in most existing dialogue
systems. It also expands the dialogue state to monitor not
only task progress, but also human engagement. Experiments
using a humanoid robot running our proposed architecture
reveal improved performance on interview tasks in terms of
the perceived timeliness of responses and users’ impressions of
the system.

I. INTRODUCTION

Medical staff routinely conduct patient interviews in a
variety of settings, e.g., ward admission [1] (Fig. 1), cognitive
assessment [2], etc. Automating some of these interview
tasks with humanoid robots might help improve the effi-
ciency of the healthcare system, by offloading repetitive and
patient-independent portions to robots, enabling human staff
to focus more on patient-specific concerns [3]. There are
several potential advantages of humanoid robots for this task.
Anthropomorphism makes people more willing to interact
with humanoids [4]. It also facilitates the elicitation of per-
tinent information, since people generally regard humanoids
as being sociable, trustworthy and empathetic [5], [6]. These
are important social attributes for patient interviews [7], [8].

On the other hand, there are also challenges.
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Fig. 1: An android interviewing a patient for ward admission.

First, anthropomorphism induces expectation of human-
like performance [4]. Specifically, human’s expect spoken
dialogues to consist of a wide range of interactions beyond
the simple exchange of words. Alongside speech exchange,
people produce backchannel cues and coordinate sponta-
neous interjections (barge-ins). These auxiliary behaviors
are essential to effective interviewing [9], [10], [11]. Not
meeting these expectations leads to feelings of discomfort
(the “Uncanny Valley” effect [12]) and lowers the overall
quality of the interaction significantly [13].

Second, the nature of the patient interview task introduces
new considerations not common in other task-oriented di-
alogues. Most task-oriented dialogue systems assume the
human user is motivated to perform the task, e.g. seeking
information. However, in the patient interview, the robot is
seeking information from the human patient. Patients are
not necessarily motivated or cooperative. Their state/mood
may also change dynamically during the interview, rendering
them unwilling or unable to continue. Hence, the robot
needs to monitor patient engagement continually and take
appropriate action (e.g., reach out for human assistance) if
necessary.

Existing dialogue systems that have been applied to patient
interviews cannot cope with the aforementioned challenges.
Common architectures of task-oriented spoken dialogue sys-
tems (Fig. 2a) assume a turn-based pattern of alternations
between the robot and human [14]. They also usually assume
the patients to be cooperative and capable of answering
interview questions. Thus, their dialogue state tracking often
focuses solely on interview progress, with little consideration
for monitoring patient engagement.
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We describe a dialogue system architecture for humanoid
robots targeting patient interview tasks (Fig. 2b), which can
address the challenges identified in a formative study using
a baseline system that implements the commonly-adopted
”turn-based” dialogue system architecture. In contrast to the
baseline architecture, our proposed architecture introduces
the following innovations. First, we elaborate the binary con-
cept of a ”turn” to the more nuanced concept of a ”stance”
towards the conversational floor by the dialogue participants.
Second, rather than a purely event-based feedback loop,
where robot behaviors are determined at turn transitions, our
architecture uses a nested feedback architecture, where deci-
sions are made both at the event level (to control the overall
dialogue/task state) and in real time (to control the robot’s
stance and behavior and the human’s perception of the
robot’s stance). Third, we expand the dialogue state to track
both task progress and patient engagement. Experiments with
an humanoid robot using our proposed architecture show
improved effectiveness in patient interview tasks compared
to the baseline.

II. FORMATIVE STUDY BASED ON PRIOR WORK

Past work automating medical interviews have all used
a “standard” architecture for spoken task-oriented dialogue
(ToD) systems (Fig. 2a), which follows a “turn-based” ap-
proach. Houser et al. used interactive voice response systems
to make regular follow-up calls [15]. Virtual embodied
conversational agents have been created to interview patients
on alcohol consumption [16], post-traumatic stress disorder
[17], etc. In [18] a humanoid interviewed the patient about
diabetes self-management using tools such as quiz. In [19]
humanoid robots were used as receptionists to collect patient
information and give instructions upon admission. The hu-
manoid robot Erica was used as a companion during COVID
in [20].

A. Formative study design

To evaluate the performance of this standard architec-
ture in patient interview tasks, we conducted a formative
user enactment study with clinicians serving as proxies for
patients, using their direct knowledge of patients gleaned
from their clinical experience. Playing the roles of patients,
the clinicians interacted with a humanoid robot [21] who
interviewed patients following a script for the Abbreviated
Mental Test (AMT) [22]. (See supplementary materials.)

Clinicians commented that quite frequently, patients be-
come unwilling or unable to continue with interviews due
to factors such as agitation or disorientation. To assess
how the robot might perform under the range of patients
encountered in clinical practice, we asked the clinicians to
interact with the robot several times, role-playing different
types of patients they commonly encountered.

After the interactions, we conducted semi-structured inter-
views where we reviewed video recordings of the interactions
with the clinicians and solicited their comments on robot
behaviors.

In this formative study, the robot was controlled by a
baseline spoken dialogue system that follows the standard
turn-based architecture (Fig. 2a). It consists of a real-time
layer and an event-based layer [23], [14]. The real-time layer
handles playback of a scripted sequence of behaviors and
includes a turn monitor to identify transitions, i.e., end of
human/system speech. The event-based layer is invoked upon
turn transitions.

During the robot turn, a behavior executor executed a man-
ually authored behavior sequence by controlling the servo
motors and a Text-to-Speech (TTS) module. The behavior
executor signalled The end of the robot turn directly to the
turn monitor.

During the human turn, the robot listened to human speech
and transcribed it using an Automatic Speech Recognition
(ASR) module. The robot detected the end of the human
turn by applying a duration threshold to periods of silence
in ASR output.

After the human turn, transcriptions were interpreted via
DialogFlow [24] using a rule-based dialogue manager (DM).
Depending on task progress, the DM would choose an
appropriate response, e.g., repeat the last question or ask
the next question. Based on the DM’s choice, the behavior
generator selected one from a set of manually authored
behavior sequences, which were passed to the behavior
executor for execution during the robot turn.

B. Results

The clinicians appreciated the robot’s human-like appear-
ance and facial expressions, which they believed could help
patients feel more comfortable and engaged in the dialogue.

However, they pointed out that the timing of the robot’s
speech did not seem natural. Sometimes the robot did not
respond to their utterances in time. On other occasions,
the robot would abruptly speak when the clinicians did
not expect, e.g., interrupting them while they were talking.
The clinicians also complained that in cases where they
sought to interrupt the robot (barge-in), e.g., to clarify a
point or correct a previous mistake, the robot simply ignored
them and continued with its ongoing behavior sequence. The
clinicians commented that it would have been better for the
robot to respond by stopping speaking and listening to the
patient.

Interestingly, our findings suggest that the “Uncanny Val-
ley” effect could have magnified the clinicians’ reactions to
these deficiencies. In the interviews, the clinicians mentioned
a less human-like robot [25] already used in their hospital,
which broadcasts notices and answers simple questions.
Although its response delays and capability to handle in-
terruptions were almost identical to those of our prototype
system, the clinicians had few complaints, suggesting that
they had different expectations and adjusted their behavior
accordingly.

The clinicians also noted that during the interviews where
they were role-playing disoriented or agitated patients, the
robot simply persisted with asking interview questions de-
spite receiving no, uncooperative or even hostile responses.



(a) Baseline Architecture

(b) Proposed Architecture

Fig. 2: Baseline (a) and proposed (b) architectures. Yel-
low/grey boxes are continuously-running/event-based.

Clinicians suggested that this behavior could be irritating and
inappropriate.

Based on this formative study, we identified two main
challenges, which our proposed architecture seeks to address.

1) Timeliness: Complaints about timeliness of the robot’s
responses stemmed from two sources. First, utterances by the
robot in response to human speech appeared to be weirdly
timed. After the human speech, the robot was silent and
motionless as the behavior executor awaited instructions
from the event-based layer, which was interpreting the human
speech and formulating its response. This led to confusion
about whether or not the robot had heard the human and
about the robot’s intention to speak. Humans occasionally
spoke to follow up, leading the robot to interrupt them when
it did respond. Second, the robot ignored human speech that
occurred while it was speaking.

We traced these problems to deficiencies in the standard
turn-taking model [26]. This model is binary, either one party
is speaking or the other. It ignores other possible states of
the conversational floor, e.g. where neither or both intend to
speak. Timeliness issues arose due to misperceptions of the
floor, both human misperception of robot intent and robot
misperceptions of human intent.

Misperceptions of the first type can be avoided by
backchannel cues. Human listeners backchannel to indicate
that they are paying attention. Speakers backchannel to hold
their turn while formulating speech [27], [28], [29]. While
robot backchanneling has been studied, these behaviors are
typically sequenced in the event-based layer by rules and/or
data-driven methods [30], [31], [32], which leads to delays
that degrade timeliness.

Misperceptions of the second type (robot ignoring human
interruptions) arise because barge-ins are generally consid-
ered as exceptions to be avoided by the turn-taking model.
While some studies did explore barge-in resolution via rules
[33], [34] and/or data driven methods [35], [36], these were
also handled by the event-based layer.

As we describe in the next section, we propose to handle
these issues in an integrated manner at the real-time layer
using a stance-based framework, which models the state
of the floor as combinations of stances (intent to speak or
listen) by the two dialogue participants (robot and human).
While stance-based frameworks have been proposed previ-
ously [37], problems arising from misperceptions of the floor
and their real-time resolutions have not been considered.
Our framework also enables context-dependent handling of
barge-ins similar to the way humans do [34].

2) Engagement Breakdown: Problems with engagement
breakdown arose because the baseline architecture solely
tracks task progress. Most dialogue systems proposed pre-
viously for healthcare lack considerations of usability and
engagement [38]. We propose to enrich signal understanding
[39] and track an expanded dialogue state that encompasses
both task progress and patient engagement. This facilitates
the recognition and handling of engagement breakdown.

III. PROPOSED ARCHITECTURE

A. Overview

The proposed architecture is illustrated in Fig. 2b. A
humanoid robot provides a stream of sensory input, such
as audio and visual (image) steams. They are sent to the
continuously-running Floor Coordinator (FC), where a be-
havior estimator estimates human behaviors, e.g., speeches,
facial expressions, gestures, etc. Using both estimates of
human behavior as well as knowledge of the robot’s own
behavior, a stance estimator estimates the human stance
and human perception of robot stance. Stance estimates are
fed back to the stance controller (StC), which takes the
place of the behavior executor in the baseline architecture,
so that the robot can adjust its behavior (utterances, facial
expressions and gesticulations) in real time to manage the
human stance and the human perception of the robot stance.
Unlike the turn-based baseline architectures, the FC adds
a continuously-running feedback pathway via the stance
estimator and the stance controller, which is critical in
improving timeliness. Stance estimates are also passed to
the floor monitor, which checks for floor state transitions,
which serve as a unified representation of both normal turn
transitions and barge-ins (Section III-B.1).

At a floor state transition, the FC invokes the Task Man-
ager (TM) and passes it the dialogue history which encodes
the multi-modal behaviors from both parties during the last
inter-transition period. The structure of the TM is similar to
that of the event-based layer in the baseline architecture, but
the individual components possess enhanced capacities. The
signal understanding component (SgU) interprets the inter-
transition history for dialogue intent and semantic entities
that are related to task progress and/or engagement level
(Section III-C.1). The dialogue manager (DM) tracks an
expanded dialogue state encompassing both task progress
and engagement level (Section III-C.2).

Behavior generation maps the dialogue action to a behav-
ior policy, rather than a scripted sequence, which is sent to
the stance controller in the FC.
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Fig. 3: Entities pertaining to human/robot are orange/blue
colored. (a) illustrates stance and conversational floor. (b)
is a robot stance model. The blue curve is the actual robot
stance. The solid and dashed orange curve represent human-
perceived robot stance, w/ and w/o backchannel cues (BC).

B. Floor Coordinator

1) Stance-Based Formulation: The FC adopts a stance-
based formulation (Fig. 3a). We index the robot/human agent
with k ∈ {R,H}. Agent k’s “stance” at time t, Ik(t), has two
components: a binary component (“Speaker”/“Listener”) and
a continuous component representing the agent’s progress
in realizing its intent (i.e, the progress of speech deliv-
ery/recognition). Perceptions of stance by the other agent
is indicated by a “hat”, e.g., the robot-perceived human
stance is ÎH(t). The configuration of the two interlocutors’
roles constitutes the state of the conversational floor [37].
FR(t) = (IR(t), ÎH(t)) is the robot-perceived floor. We
index stance (role) transitions by i ∈ N. We denote the
inter-transition period as Ti = [ti, ti+1). Fig. 3a illustrates
transitions between possible floor states.

The stance-based formulation is more general than the
turn-taking model. A robot-perceived turn corresponds to
an inter-transition period Ti where FR(t) = “Human” or
“Robot”. Turn transitions correspond to floor state transitions
where the two agents switch roles (consecutively). The
person yields the turn if (estimate of) human stance changes
from speaker to listener (ÎH(ti): Speaker → Listener)
while FR(t) has been “Human”. Upon termination of robot
speech, the robot changes the binary component of IR

from speaker to listener. Barge-ins are also represented as
stance transitions. The robot perceives a human barges-in if
ÎH(ti): Listener → Speaker while IR(ti) = Speaker.

Human stance is estimated by a human stance model to
produce ÎH(t). A silence threshold applied to a voice activity
detector (VAD) can estimate the binary component of human
stance (role). A floor monitor detects transitions in FR(t)
and invokes the TM. Since barge-ins are also represented
as transitions in FR(t), the TM processes them via the same
pipeline like normal turn transitions, thereby enabling context
and policy based barge-in handling.

2) Stance Controller: The stance controller (StC) coor-
dinates the choice and timing of robot behaviors within Ti.
These include robot stance transitions and behaviors such as
speech delivery and backchanneling. The StC’s coordination
is configured by the behavior policy Pi. Pi could be a
behavior sequence similar to the standard architecture, an
explicit policy, an implicit policy specified by a cost function,
or a combination of those.

The idea of specifying Pi as a cost function emerges
from the stance-based formulation and provides a functional
motive for backchanneling. As discussed in Section II-B.1,
a period of silence after human speech can lead to uncer-
tainty in the human’s perception of robot stance. The StC
treats robot behaviors including backchanneling as means to
control human perceptions of robot stance. The person is
assumed to estimate robot stance (ÎR(t)). The StC estimates
this human perception as ˆ̂

IR(t) with a robot stance model.
If Pi is specified as a cost function punishing differences

between ÎR and IR, the StC can use Model Predicative
Control (MPC) [40] to derive robot actions. Given IR(t)
over Ti, an alignment optimizer solves for a sequence of
robot behaviors that minimizes the difference between ˆ̂

IR(t)
and IR(t) over a prediction horizon.

Fig. 3b illustrates an example of a robot stance model.
The person finishes speaking (realizes his/her intention as a
speaker) when the red curve reaches 1. Based on his/her
behavior, s/he also expects that robot to realize s/he has
finished speaking, and that the robot’s role as a listener has
ended, with some confidence (the orange curve goes to 0.5).
After a silence threshold ∆t, the robot actually detects the
end of human speech (blue curve goes up to 1). If the robot
remains inactive following the end of human speech, the
person becomes more uncertain about the robot stance (the
orange curve begins to decay). This could eventually lead the
human to probe the robot stance (the dashed orange curve
drops below the dashed black line). On the other hand, a
backchannel cue could reduce uncertainty and align human
perception with IR (the solid orange curve is brought closer
to the blue curve after the robot utters “Okay”) Applying
MPC to align ˆ̂

IR(t) with IR(t) assuming this robot stance
model enables the StC to derive and execute backchannel
cues.

C. Task Manager
In typical ToD scenarios like hotel booking, users are

self-motivated to engage with the system, as they have



Fig. 4: Illustration of signal understanding to obtain user
intent and task-related and engagement-related slots.

specific objectives. Hence, the system only needs to track
task progress, In contrast, patient interviews involve robot-
initiated dialogues where user engagement cannot be pre-
sumed. This necessitates the estimation and management of
user engagement.

1) Signal Understanding: The signal understanding
(SgU) component processes the input signal S, the inter-
transition dialogue history including floor state transitions
and the two parties’ behaviors. It produces interpretations
in the form of the user’s dialogue intent (Int(S)) and
relevant slots filled with semantic concepts (Slot(S)). Intent
detection determines the patient’s aim. Slot filling identifies
and assigns values v to key semantic entities k, yielding
results of the form {k : v}.

As illustrated in Fig. 4, the semantic concepts underly-
ing Int(S) and Slot(S) are related to task progress and
the user’s engagement level during the inter-transition pe-
riod. Possible intents detected include answer question,
and ask for help, not answer question. Task slots
generally hold patient answers to interview questions. En-
gagement slots reflect the user’s willingness and ability to
proceed.

Intent detection and slot filling were performed via large
language models (LLM) in an instruction-based manner. For
example, the prompt used for Fig. 4 is “Evaluate how much
the patient lost weight. Choose one of the categories: 1-
5kg, 6-10kg, 11-15kg, >15kg, Unsure. If the patient does
not answer the question, choose UNCLEAR. [Dialogue]
Nurse: {robot question} Patient: {human response}”, where
robot question and {human response} are filled according
to the dialogue history. Since the answer slot is filled
in this example, the user’s dialogue intent was recog-
nized as answer question and the engagement slot
answer intelligibly is filled as yes. Another prompt
issued in parallel was used to fill the answer willingly
slot: You are a robot nurse who is conducting a patient
assessment form survey in Cantonese. Is the patient being
uncooperative? Answer yes only if the patient refuses to
answer and is upset and curses or is afraid of you and
wants to speak to a human nurse. Choose between two
options: Yes, No. More detailed examples are provided in
“SgU Examples” of supplementary materials.

2) Dialogue Manager: Based on interpretations from the
SgU, the state tracker in the dialogue manager (DM) tracks

the dialogue state, i.e., task progress and human engagement
level. Future dialogue actions (e.g., asking question, seeking
human interventions, etc.) are then decided by the dialogue
policy.

In the standard architecture, the dialogue state developed
from task-related interpretations represents task progress
only (progress tracker). In contrast, the dialogue state of
our DM is expanded to cover both task progress and the
interlocutor’s engagement (engagement tracker). The latter
is supported by the engagement-related slots filled by the
SgU. For instance, many answer intelligibly slots
flagged as no may indicate confusion in the user. Many neg-
atively filled answer willingly slots and/or the missing
answer question intent may reflect unwillingness to
engage.

When the person appears engaged, the DM focuses on
completing the interview task. In contrast, if the dialogue
state indicates an engagement breakdown, the DM instructs
the robot to disengage from the conversation and seek human
intervention.

Notably, the engagement-related slots characterize the
nature of the engagement breakdown, which provides addi-
tional context for subsequent human follow-up. The process-
ing of SgU is parallelized. After one floor state transition,
several dialogue state updates are made and multiple dia-
logue actions produced. Usually the DM first decides the next
stance, and then more specific actions like what questions to
ask.

3) Behavior Generation: Dialogue actions are mapped
to behavior policies during behavior generation and sent
to the StC (Section III-B.2). The behavior policy could
take various forms. For example, it can be a combination
of a cost function punishing human misperception of IR,
which leads to backchaneling, as discussed previously, and
a behavior sequence. The dialogue action of repeating the
current question is mapped to a paraphrasing of that question.
To disengage from the conversation, the robot physically
moves to a human nurse while saying either “Sorry, this
patient seems a bit upset, could you please come and help?”
or “sorry, I am having issues with communicating with this
patient, could you please come and help?” depending on the
patient’s state of engagement, as discussed previously.

IV. EXPERIMENTS

A. Coordination of Robot Actions

We evaluated the effectiveness of FC in coordinating robot
behaviors including backchanneling and barge-in resolutions.

1) System Implementation: We used the same prototype
system employed in our formative study for baseline. For
experimental system, we replaced the prototype’s real-time
layer with an initial implementation of the FC module
and made minor modifications on the event-based layer for
compatibility. The “AMT demo” in supplementary materi-
als is a video of the experimental system conducting the
AMT. Following the model depicted in Section III-B.2,
the FC backchanneled in robot turn while the event-based
layer was processing (“bc demo1” and “bc demo2” in the



Fig. 5: Box plot of the ratings of the Likert-scale questions
from Section IV-A. Red bar represents median. Diamonds
are outliers w.r.t. this range. Significant pairwise differences
were annotated above the boxes: ‘∗’ for 0.01 ≤ p < 0.05,
‘∗∗’ for 0.001 ≤ p < 0.01, and ‘∗ ∗ ∗’ for p < 0.001. Color
differentiates system types. The bracketed arrow pointing
up/down denotes that a higher/lower value is better.

supplementary materials are examples of these backchannel
cues.). It also signaled human barge-ins as state transitions
to the event-based layer, who would configure the FC to stop
ongoing delivery and switch to listening stance.

2) Experimental Procedure: Twenty university students
were recruited for this experiment. They participated in the
same AMT task of the formative study twice, one with each
system. After each interaction, we obtained the participant’s
subjective evaluation of the robot’s behaviors via 7-point
Likert-scale questionnaires as well as semi-structured inter-
views. In the supplementary materials, see “LikertQuestions”
for the Likert-scale questionnaire and “OpenQuestions” for
questions asked during this semi-structured interview. The
order of interactions was randomized and counterbalanced.

3) Results: Fig. 5 illustrates results of the Likert-scale
questions. Higher scores in Q2, Q5 and lower scores in Q8
indicate that the perceived timeliness of the robot was better
(Cronbach’s Alpha: 0.657). Higher scores in Q1, Q3, Q4
and lower scores in Q6, Q7 imply better impressions of
the robot. A Wilcoxon signed rank test revealed that the
experimental system (orange) was significantly better than
the baseline system (blue) in Q8. The p-value p, test statistics
W , effect size r (matched pairs rank-biserial correlation), and
interpretation were (p = 0.004,W = 106.5, r = 0.77, large
effect). While the trends for Q2 and Q5 were not statistically
significant, they favored the experiment system. Among the
rest of the questions, the experiment system was significantly
better on Q6 and Q7, with (p = 0.037,W = 61.50, r =
0.58, large effect) and (p = 0.035,W = 53.0, r = 0.61,
large effect) for Q6 and Q7 respectively. The trends for the
other questions also favored the experiment system. Overall,
these results suggested that the FC improved timeliness and
was effective in coordinating backchanneling and supporting
barge-in handling.

B. Signal Understanding of Task Manager

We further evaluated the accuracy of the interpretations
from the signal understanding component. We focused on

text input and implemented the SgU with GPT-4 for slot
filling from texts. All test samples were derived from the
interview task of filling the patient assessment form Patient
Assessment Form (PAF) (Fig. 1). See “PAF” in the sup-
plementary materials for the assessment form. Each sample
included the robot’s question, the user’s reply, and the correct
slot values. The transcriptions were all in Cantonese.

1) Task-Related Interpretations: This experiment evalu-
ated the accuracy of task-related slots filled by our SgU.
We compiled a test set of 86 samples collected from both
synthetic and real interactions. No engagement breakdown
was present in this dataset. The SgU achieved an accuracy
of 95.35% in slot-filling, evidencing its effectiveness in
producing task-related interpretations.

2) Engagement-Related Interpretations: This experiment
explored the SgU’s ability in engagement-related slot fill-
ing. We prepared another dataset consisting of 30 sam-
ples of actual interactions. 20 of them were interactions
where engagement breakdown occurred due to the user
being unwilling to continue, characterized by the presence
of foul languages, among other indicators, in the user’s
response. For these user responses, the engagement-related
slot answer willingly should be filled with No. The
remainder of the 10 interactions saw no sign of engagement
breakdown but the user’s response was assertive and carried
intense emotions. Some of the (translated) responses are ”I’m
coughing to death” and ”Why are you asking me this, I
haven’t been coughing”. These samples examined whether
the SgU would raise false alarms for edge cases. Results
revealed that the slot was correctly filled in 28 out of 30
samples, leading to a 93.33% accuracy rate.

C. Overall Evaluation

Finally, we made a holistic evaluation of the proposed
architecture through a user enactment study.

1) System Implementation: The experiment system was
an implementation of the proposed architecture deployed on
the same android of the formative study. The FC and SgU
were the same as in Sections IV-A and IV-B. The DM was
rule-based, and in behavior generation behaviors were chosen
from manually-authored scripts. The baseline system used
the same TM of the experimental system. But instead of the
FC, it adopted the real-time layer of the prototype system in
Section II. Minor modifications were made for compatibility.

2) Experimental Procedure: Four clinicians were re-
cruited. They interacted with the android administering the
same PAF task as in Section IV-B (Fig. 1). See “PAF demo”
for a video of the experimental system performing the PAF.
Each subject underwent two experiment sessions. In the first
session, s/he interacted with one of the two systems, i.e.,
baseline or experimental system. In the second session the
other system was used. Each session had four interactions.
In the first two interactions, s/he enacted the role of either a
lucid and cooperative patient or a patient who was hard to
work with. In the second two, s/he role played the other type
of patient. Hence each subject had eight interactions in total.
After each interaction, the subject filled the same Likert-scale



questionnaire used in Section IV-A. We also took notes of
their comments regarding that interaction. A semi-structured
interview similar to that of Section IV-A was conducted at the
end of each session, where the subject’s overall impressions
and suggestions were discussed. The order of system and
patient type was randomized and counterbalanced. In each
interaction only a subset of questions from the PAF were
asked. To prevent learning effect, we created 8 different
question sequences. These sequences were of similar com-
plexity. See “PAF Sequence” in the supplementary materials
for more details. They were used for all subjects, but the
order with which each subject met them was randomized.

3) Results: When a cooperative and lucid patient was
role-played (Fig. 6a), the ratings for Q2, Q5 and Q8 favored
the experimental system over the baseline system. This sup-
ported the improved timeliness and responsiveness afforded
by the FC of the experimental system. In interactions with
difficult patients (Fig. 6b), the experimental system was rated
worse than the baseline system on Q2, Q5 and Q8 as well
as on several other questions. Due to the limited number
of subjects, we can only hypothesize the cause here. Some
clinicians noted that the robot’s backchanneling “sounded
like the robot didn’t hear me” and the robot should adjust its
behaviors “if the person appeared impatient”. I.e., backchan-
nel cues produced by the FC could have further irritated
patients with low level of engagement. It could be that robot’s
backchanneling should vary by human engagement level.

Of the 90 task-related slots occurred across all interactions
with both system, 84.44% were correctly filled by the SgU.
This result testified the efficacy of our SgU in making task-
related interpretations of human response. Clinicians also
appreciated the TM’s capability of monitoring engagement
and handling breakdown. For example, in one interaction a
clinician who pretended to be impatient and uncooperative
commented that the robot “did it well,” when it recognized
the patient’s unwillingness and sought human intervention.
(See “disengage demo” in the supplementary materials for a
video recording of this interaction.) Moreover, many clini-
cians commented that, now that the robot could perceive the
patient’s engagement level, it should incorporate interview
techniques commonly adopted by clinicians.

Overall, these results suggested that our proposed archi-
tecture improved the robot’s effectiveness in administering
the PAF task.

V. CONCLUSION

In this work, we proposed a novel dialogue system ar-
chitecture for humanoid robots performing patient interview
tasks. A floor coordinator coordinates robot behaviors includ-
ing backchanneling and supports barge-in handling. Its coor-
dination derives from the management of participants’ stance
and perception of stance. A task manager interprets dialogue
history to track an expanded dialogue state encompassing
both interview progress and patient engagement. Together,
our architecture can better cope with many challenges arising
from performing patient interviews with humanoid robots.

(a) Results when role-playing a cooperative and lucid patient.

(b) Results when role-playing a hard-to-work-with patient.

Fig. 6: Box plot of the Likert-scale questionnaire from
Section IV-C. The convention of Fig. 5 was followed.

We identified several limitations and future directions.
In terms of the experiments, our subject population is
small and doesn’t match that of the target population. Our
implementation of our proposed architecture can also be
improved. Future work should enrich the human/robot stance
model by fusing the multi-modal behaviors of both parties.
Likewise, currently the dialogue manager navigated through
the interview task via simple rules. As suggested by the
clinicians, the capability to track engagement should enable
the robot to support more flexible dialogue policies such
as asking scaffolding questions [41] if the person has diffi-
culty answering. One interesting direction to explore would
be LLM-based online generation of scaffolding questions.
Notably, to meet the standards of medical setting, it will be
paramount to keep the content of the dialogue safe and under
control.
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