Dynamic Prompting Improves Turn-taking in Embodied Spoken
Dialogue Systems

Yifan Shen*, Dingdong Liu*, Xiaoyu Mo, Fugee Tsung, Xiaojuan Ma, Bertram E. Shi

Abstract—The ability to coordinate turn taking during
spoken dialogue is crucial for an embodied spoken dialogue
system (SDS), e.g., in a humanoid robot. The SDS needs to
model transitions in the conversational floor, which describes
each party’s stance (either speaking or listening). Further,
the SDS needs to signal its perception of the floor to the
human, so that they can coordinate floor transitions and
resolve conflicts. Conventional SDS employ standalone modules
to control floor transitions but do not produce timely and
appropriate responses. Recent end-to-end audio LLLMs generate
responses quickly, but do not coordinate floor transitions as
accurately. In this work, we propose an SDS architecture that
dynamically adjusts its prompts to an end-to-end audio LLM
based upon its perception of the conversational floor state. The
LLM output determines not only the audio output, but also the
perceived floor state. This enables the system to signal its stance
to the human, both when listening and when speaking. We
conducted an experiment where a humanoid robot administered
a semi-structured interview with human subjects. Results show
that, compared with baseline systems using static prompts,
dynamic prompting enables the LLM to model floor transitions
more accurately, to generate more appropriate signalling, and
to interrupt less, leading to smoother turn-taking in dialogue.

I. INTRODUCTION

Humanoid conversational robots offer significant advan-
tages for social tasks [1], [2]. Their anthropomorphic design
evokes expectations of human-like interaction. However,
when these are unmet, the perceived interaction quality
deteriorates [3], [4], [5]. Natural turn-taking in spoken di-
alogue is critical aspect in meeting these expectations, yet
most spoken dialogue systems (SDS) [6], [7], [8] assume
simplified patterns of alternating speech separated by silence,
which fail to capture the nuanced, overlapping, and context-
sensitive nature of human conversation.

Dialogue turn-taking can be conceptualized as joint man-
agement of the conversational floor [4]. The floor state
comprises the stance of both interlocutors (speaking or
listening). Stance transitions trigger floor state transitions.
Human interlocutors coordinate turn-taking by estimating
their partner’s stance through behavioral cues, deciding their
own stance accordingly, and signaling their floor state esti-

All authors are with Hong Kong University of Science and Technol-
ogy in the Department of Electronic and Computer Engineering (YS,
BES), Department of Computer Science (DL, XJM), Division of Emerging
Interdisciplinary Areas(XYM), Department of Industrial Engineering and
Decision Analytics (FT), and the Center for Aging Science (BES). This
work was supported by the HKUST Center for Aging Science (projects
[TBD]).

Supplementary materials are in https://drive.google.com/
drive/folders/15S9_L1aB91T6-52f0g701i6myVN/LC1bQ7?
usp=sharing

*These authors contributed equally to this work.

— | Tr = Robot |
Robot Offset| T — Speak

Tz = Robot |
Robot Offset T = Sk
or Human Onset e e |

(Fr = Hurman Fr = Human
Iz - Ig = Liste

Human Offset
or Timeout

Human Timeout

(@) (b)

Audio data (continuation)

;f’:x :ij”t r P Human Offset [ flr’"x

A Ty e N
Faty 1) = Robot] — A

| Upon Entering or Human Offset

P3: Decide [
Audio data

Tool Call_gfqip.. (task-progressing utierances)

T P3: Decide [p H

Upon Entering or Human Offset

12si0 0G0y

v
‘ TR — Human Human Timeout

= 4ASEER Human Offset

Fg = Free

Yy

" ',p([,;jib“ Audio data (acknowledgement)

S PrEsil; Dy

\Fr(tn 1) = Humaen| rnnl Call

©

Fig. 1: shows the state transition of VAD-based SDS.
[(®)] shows state transition in more advanced SDS where a
model of floor transition is employed. [(c)| illustrates the state
transition diagram of the proposed system.

mate via behavioral feedback [9], [10]. For natural human-
robot interaction, an SDS should model floor transitions and
signal its estimates similarly.

Conventional SDS architectures employ a pipelined ap-
proach. A dedicated module models floor transitions, iden-
tifying changes in human stance and triggering/stopping
robot speech when needed [11]. While advanced models
[12], [13] approximate human-human floor transition patterns
effectively, the required audio-text conversion and cascading
components introduce response delays that impede timely
floor state signaling.

End-to-end audio LLMs like GPT40-Realtime [14], [15],
[16], [17] have emerged as alternatives. These process utter-
ances from the human and generate responses directly with-
out explicit audio-text conversion. By integrating response
generation and floor transition modeling into a single model,
they achieve substantially lower response latency. However,
they typically model floor transitions less accurately than
dedicated models in conventional SDS [15], [18].
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Fig. 2: Our proposed SDS architecture.

We propose an SDS architecture that dynamically prompts
an audio LLM to model floor transitions and produce ap-
propriate robot responses (Fig. [2). Our floor coordinator
employs a dynamic prompting mechanism. Upon detecting
audio events such as human utterance offsets, it uses context-
specific prompts based on the current floor state estimate.
These prompts instruct the LLM to provide updated human
stance estimates,new robot stance decisions, and robot re-
sponses that signal the latest floor state estimate.

Evaluation in a humanoid robot interviewer scenario
demonstrates that our architecture more accurately models
floor transitions and better signals the system’s intent than
baseline systems using static prompts. Overall, this results
in smoother dialogue turn-taking.

II. BACKGROUND AND RELATED WORK
A. Turn-Taking and the Conversational Floor

Natural turn-taking in human-human dialogue can be
described as transitions in the conversational floor [4], [19].

The stance of agent k, I € {Speak, Listen}, refers to
their intent, where £k € {H, R} denotes human or robot.
I, = Speak means that agent k is speaking or intends to.
I, = Listen means that agent k is attending for incoming
speech. The state of the conversational floor F' comprises
of the stance of both parties, i.e., F = (Ig,Iy). Stance
transitions lead to transitions in the conversational floor.

An agent’s stance is correlated with, but not equivalent to,
the presence or absence of speech. Thus, speech onsets or
offsets do not imply stance transitions. For example, agent k
could pause while I, = Speak. They might also speak when
I = Listen, e.g., when back-channelling (BC) [20], [21],
[9].

To coordinate turn-taking, the two parties need to model
floor transitions and signal their perception to one another.

First, each party maintains an estimate of the conver-
sational floor by estimating the other agent’s stance and
deciding one’s own stance accordingly. We denote the robot’s
estimate of floor state by Fg = (Ig, It1), where the " symbol
indicates an estimate.

Second, to establish common ground and resolve conflicts,
each party can signal its floor state estimate [10]. For
example, when party A perceives that party B has finished
speaking and intends to speak up, A may signal this with

an acknowledging utterance, referred to as a turn-initial cue
[22], which precedes A’s stance transition. If A is wrong, this
cue allows B to recognize A’s mis-perception and resolve
conflicts efficiently.

B. Turn-Taking in Existing SDS

Existing SDS models floor state Fr with different levels
of granularity and flexibility.

The majority of SDS, including both pipelined systems
and end-to-end audio LLM’s, represent two different floor
states, namely Fr = Robot and Fr = Human. In the
former state the system produces robot utterances, whereas
in the latter it remains quiet and observes human utterances.

Transitions between these two states are managed to
different level of flexibility.

The most naive solution involves a VAD module with si-
lence thresholds (Fig. [Ta)). This approach equates onset/offset
in human utterances with floor transitions [9]. The GPT4o-
realtime API developed by OpenAl adopts this approach
[14]. This assumption ignores the differences between be-
havior changes and stance changes noted above.

Pipelined SDS often employ more advanced models capa-
ble of recognizing floor transition events from acoustic and
textual features [23], [24], [25]. State transitions in these
systems are more flexible, since they do not necessarily
start/stop robot utterances upon offset/onset of human ut-
terances (Fig. [Ib). For example, the Duplex Conversation
system [23] achieves an F1 score of 0.89 in differentiating
listeners’ BC from actual barge-ins. Models like voice activ-
ity projection (VAP) [12] and Turn-GPT [13] utilize features
from both parties’ utterances to estimate floor transitions.
Skantze et al. report the user felt interrupted by an SDS
that combined these two models only 6.9% of the time
[26], indicating that these models can accurately differentiate
human pauses from floor transitions. However, due to their
pipelined architecture, these SDS can be slow. For example,
the system in [26] has a mean response latency of 1.5s. This
prevents the system from producing timely signals of its floor
perception.

Some end-to-end audio LLMs generate system utterances
and model floor transitions simultaneously. For example, the
systems in [18] and [27] are trained to produce special tokens
representing floor transitions, which trigger starts/stops in
audio streaming. However, the performance of these LLMs
currently lags that of pipelined systems [28]. They also
cannot estimate floor transitions accurately. For example, the
RTTL-DG model in [18] achieved an F1 scores of 0.52 and
0.62 in starting and stopping speech.

Some end-to-end models like Moshi [17] and omni-
flatten [15] eliminate explicit representation of floor states
altogether. These LLMs constantly output audio chunks,
which can contain silence if the system decides to listen.
Making floor state implicit promises infinite granularity and
flexibility. Unfortunately, these LLMs still do not model floor
transitions accurately. For instance, the Moshi model and
the omni-flatten model have accuracies of 0.55 and 0.71 in
speaking up at the right time [15].



C. Our Contribution

In this work, we propose an SDS architecture to improve
an end-to-end audio LLM’s turn-taking performance using
dynamic prompting (Fig. [2).

The dynamic prompt mechanism is based on a 4-state
model of floor transitions (Fig. [Ic), where we adjust the
prompt based on Fr. When Fr = Human, at human
offset, the audio LLM is prompted to evaluate whether the
human has finished speaking. If so, Fi transitions to F'ree,
where the audio LLM is triggered to estimate the system’s
next stance according to the dialogue task. Otherwise, F'r
is unchanged. On the other hand, when Fr = Robot, if the
human speaks up the audio LLM is prompted to evaluate
the person’s intent. If the human does not appear to want
to interrupt, e.g. is backchanneling, F'r is unchanged. The
system picks up from where it left off. Otherwise, Fr
transitions to Both, where the LLM is prompted to decide
its next stance.

The advantage of the proposed system is three-fold. First,
the 4-state model affords more nuanced turn-taking patterns.
In previous systems, Fr will transition into Human when
the person interrupts the robot to take the floor. Our 4-state
model represents this situation as a different state Both,
potentially enabling the robot to compete for the floor with
the human in a debate. A similar formulation was proposed
in [4], [19] for text-based systems.

Second, the dynamic prompting mechanism decouples
low- and high-level aspects of turn-taking. When Fp =
Human or Robot, the prompts used are agnostic to the
task. They only instruct the LLM to evaluate whether a
complete message can or has been obtained/delivered. When
Fr = Free or Both, task-specific prompts are used to
decide the robot’s next step in achieving its conversational
goal. Narrowing down the scope of floor transition modeling
in each state simplifies the estimation task and allows more
targeted prompts. Recently, Wang et al. [27] modified a chat-
based LLM to directly interface with ASR and TTS modules,
but used only a static prompt to estimate floor transitions.
Our experimental results show that dynamic prompting pro-
duces fewer interruptions compared static prompting.

Finally, our system asks the LLM to simultaneously output
floor state estimates and robot utterances, enabling the robot
to signal its perception of the floor. Although previous studies
can accurately estimate floor transitions [13][29], they have
yet to demonstrate timely signalling.

ITII. PROPOSED ARCHITECTURE

The proposed SDS architecture, illustrated in Fig.
consists of an audio event detector, a finite-state machine,
a prompt repository and an end-to-end audio LLM. Our ex-
periments use GPT4o-Realtime [14] for the audio LLM, but
other end-to-end audio LLMs, such as Gemini 2 [30], could
be used with no to minimal modification to our architecture.
The LLM that takes in audio streams is prompted to return
tool calls, audio streams, and transcripts.
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Fig. 3: Example work flow of the floor state FSM, annotated
with audio events, prompts and sample transcripts. Solid
arrows represent time periods when floor state estimate
remains constant. Dashed arrows show how an audio event
causes the FSM to prompt the LLM and update F'r. Zigzag
shade represents robot utterances discarded due to human
onset. Latency in event detection is not shown, and the length
of solid arrows is not proportionate to actual duration.

A. Audio Event Detector

The audio event detector identifies onsets/offsets/timeouts
in human/robot utterances. Events in human audio are de-
tected via a VAD with a silence threshold [31].

At the onset of human utterances, ongoing processing in
the audio LLM is stopped and robot utterances are cut-off
(the switch in Fig.[2). At the offset of human/robot utterances
or the timeout in human audio (absence of human utterances
within a window), the finite-state machine is triggered.

B. Finite-State Machine for Floor State

We implement floor transitions via a finite-state machine
(FSM) whose state transition diagram is shown in Fig. [T} An
example workflow of the FSM is given in Fig.

Transitions occur at times ¢,,. If F'r = Robot or Human,
transitions are triggered by human offsets detected by the
audio event detector. If Fr = Both or Free, transitions are
triggered upon entry to the state or by human offsets detected
by the audio event detector.

The FSM decides the next floor state by calling the audio
LLM using a state-dependent prompt. If Fr = Robot or
Human, the prompt instructs the LLM to estimate the
human’s stance and change the floor state accordingly. If
Fr = Both or Free, the prompt instructs the LLM to
determine the robot’s stance and change the floor state to
either F'r = Robot or Human.

The prompts also instruct the LLM to generate audio
outputs, whose delivery is initiated at state transitions. These
outputs either progress the conversation to achieve the goals
of the task or signal the robot’s understanding of the floor
state, e.g., backchannelling. Audio outputs that progress
the conversation are generated to directly as audio chunks.
Backchanneling outputs are chosen from among a set of pre-
recorded utterances.

Below we give more details about the state transitions.

1) If Fr(t,—1) = Robot: State transitions are triggered
by offsets of human or robot utterances.

Upon a robot offset, the state directly transitions to
Fr(t,) = Human, i.e., the robot assumes that the human
will respond to its completed utterance.

Upon a human offset, the FSM prompts the LLM to eval-
uate whether the human wishes to take over the floor, e.g.,



a pre-emptive answer to a question, or is backchanneling.
If the former, the LLM returns a tool call, which contains a
parameter indicating which from among a set of pre-recorded
backchanneling utterances the robot should speak. The FSM
sets the next state Fr(t,) = Both. If the latter, the LLM
returns audio data, which is biased to continue the robot’s
previous utterance. The state is unchanged.

2) If Fr(tn—1) = Human: State transitions are triggered
either by a human offset or after a timeout period during
which the human is silent.

Upon a human timeout, the FSM directly sets directly
transitions to Fr(t,) = Free.

Upon a human offset, the FSM prompts LLM to determine
whether the offset is due to a temporary pause in or to
the end of the human’s utterance. If the former, the LLM
returns a tool call containing a parameter indicating which
backchannel utterance the robot should deliver. The state
remains unchanged (Fg(t,) = Human). If the latter, the
LLM returns audio data, which is biased by the prompt to be
a non-committal acknowledgement,such as *Got it” (Fig. [3).
The FSM sets the next state to be Fg(t,) = Free.

3) If Fr(t,—1) = Both or Free: Upon entry, the FSM
prompts the LLM to determine the new robot stance I based
on the past dialogue history and the demands of the task.
If there is a human utterance during the LLM processing
time, the request is canceled and re-issued after the human
offset with an updated dialogue history that includes the most
recent utterance.

If the LLM decides the robot should listen for more
information, it returns a tool call. The FSM sets the next
state Fr(t,) = Human.

If the LLM decides the robot should speak, it returns audio
data, which is biased by the prompt to both repeat/paraphrase
information provided by the user and progress the dialogue
task. The FSM sets the next state to be Fgr(t,) = Robot.
The transcript of robot utterances provided by the LLM is
recorded for composing prompt P2 in the Robot state.

Our current implementation uses the same prompt in both
states Fr(t,—1) = Both and Free. However, in future
implementations, this should not be the case. For example,
if Fr(t,—1) = Both the robot and human should be able to
compete for the floor. However, due to current limitations in
GPT4o-realtime, we always interrupt robot output utterances
upon human onset. [[]

C. Prompt Repository

Prompts are assembled by combining up to four parts:
an embodiment description, a task description, the floor
instructions and a transcript.

The first two parts remain constant during the conversa-
tion. The embodiment description characterizes the form and
capability of the robot. The task description outline the goal
of the dialogue task and strategies to progress it.

ITo estimate floor state upon overlap, robot utterances in the conversation
history should contain only what has been said. GPT4o-realtime currently
does not allow client programs to add robot utterances into the conversation
history. Hence, robot utterance playback is stopped when truncating server-
side history for consistency.

The floor instructions change depending upon the floor
state, as described earlier. These provide guidance on how
to estimate human stance, decide robot stance and signal
robot perception of the floor. These instructions are task-
independent.

The FSM queries the prompt repository with Fr(n — 1)
to obtain prompts. If Fr(n — 1) = Robot or Human,
the prompts (P1 or P2) contain the embodiment description
and floor instructions, but not the task description. P1 also
contains the transcript of the robot’s current utterances.

If Fr(n) = DBoth or Free, the returned prompt P3
contains the embodiment description, the task description,
and the floor instructions.

Exact assembly procedures are exemplified
“prompt_details” file in the supplemental materials.

in the

1V. EXPERIMENTAL METHODS
A. System Implementation

We implemented three SDS: a vanilla (baseline) system, a
static floor-instructed system, and the proposed system with
dynamic (state dependent) floor instructions.

For all systems the LLM is triggered at human offset
or timeout. All processing/playback is stopped upon human
onset, and the system starts a timeout timer on robot offset.

The vanilla system follows an “out-of-box” approach to
using GPT4o-realtime as an SDS [32] following the state
transition diagram in Fig. 1(a). Calls to the LLM are gener-
ated after a human offset or a human timeout using a static
prompt consisting of embodiment and task descriptions only.
The LLM generates audio data only, but no tool calls. Thus,
the LLM always starts audio stream after any human offset
or timeout. In other words, floor transitions are controlled
reflexively by the VAD component.

The floor-instructed system uses a static prompt, which
contains not only the embodiment and task descriptions, but
also instructions on how to model floor transitions. These
instructions combine the floor instructions used by the three
different prompts (P1-P3) from the proposed system. It’s
operation follows the state transition diagram in Fig. 1(b).
Calls to the LLM are generated after either human offset
a human timeout. The LLM can either output an audio
stream, which causes the state to transition to Fp = Robot
or make a tool call. which cause the state to transition to
Fr = Human. The floor-instructed system prompts the
LLM to model floor transitions, but does not alter the prompt
based on floor state and has a simpler elaboration of floor
state than the proposed system.

The same GPT4o-realtime model and VAD model were
used by all systems. Timeout and VAD parameters were
kept the same. The prompts share the same set of task
descriptions/embodiment description and floor-instructions.
Further, the floor-instructed system can produce pre-recorded
BC in the same way as the proposed system.

All three systems were deployed on the same humanoid
robot [33]. Human utterances were acquired through a
collar microphone that subjects wore during the experiment.
Robot utterances were played via its integrated speaker. More



System # of LLM—Based‘ . Dynam@c
Floor States  Floor Transitions  Prompting
Vanilla 2 X X
Floor-Instructed | 2 v X
Proposed 4 v v

TABLE I: Key differences in the three systems.

details are provided in the “implementation_details” file in
the supplementary materials.

B. Interaction Task

The robot administered semi-structured interviews (SSI)
[34] about the human subjects’ opinions and experiences
on sleep-related behaviors: “revenge bedtime procrastina-
tion”, “social jetlag” and taking naps during the day. The
task descriptions used in the prompt are provided in the
“prompt_details” file in the supplemental materials.

C. Procedure

Each experiment session consisted of three phases.

In the introduction phase, the experimenter explained the
flow of the experiment to the subject, obtained written
consent and collected demographic information.

In the interaction phase, the subject sat in front of the robot
and had three conversations with it. In each conversation the
robot was controlled by one of the three systems. The order
of topics was fixed across experiment sessions. The order
of system versions was randomized and counterbalanced.
After each conversation, the subject filled out a questionnaire.
The two parties’ speech were segmented into inter-pausal
units (IPUs) [9] by running a VAD offline. Details of
the questionnaire and the segmentation are provided in the
“questionnaire” file and the “robot_delay_calculation” file in
the supplemental materials.

In the annotation phase, the subject listened through the
three conversations in order. Similar to [26], the subject
was instructed to inform the experimenter whenever they
felt interrupted by the robot. The experimenter recorded the
interrupting robot IPU together with the subject’s explanation
of why they felt interrupted.

D. Participant Demographics

We recruited 18 participants (12 male, 6 female), ranging
in age from 21 to 48 years (Mean = 26.3, SD = 6.24).
Their educational backgrounds were balanced between tech-
nical (10 participants; Mechanical Engineering, Electronic
Engineering, Computer Science, etc) and non-technical dis-
ciplines (8 participants; Finance, Education, etc).

V. RESULTS
A. Response Time and Interruption Rate

Following [26], we evaluated the turn-taking performance
of an SDS by its response time and interruption rate. Re-
sponse time is defined as time interval between the offset
of a human IPU and the onset of the subsequent robot IPU.
Interruption rate is defined as the portion of robot IPUs that
interrupted the human subject. Often, systems must trade-off

== Proposed
&= Floor-instructed
== Vanilla

Fig. 4: Histogram of response time (s).

. Response Time (s) Interruption Rate
System Type Mean | Median Mean [ Median
Vanilla 1.232 0.970 19.81% 12.13%
Floor-Instructed | 0.962 0.810 12.77%  10.56%
Proposed 0.986 0.840 7.82% 5.56%

TABLE II: Mean and median of response time and in-
terruption rate. The mean response time is computed by
averaging over all human-robot IPU pairs from conversations
controlled by a particular system. The mean interruption
rate is computed for each conversation and averaged over
conversations. The medians are computed accordingly.

between the two metrics. For example, using a VAD with a
short silence threshold for turn-taking leads to short response
time but high interruption rate.

Response time is computed from the IPUs of each conver-
sation. See “robot_delay_calculation” in the supplementary
material. Interruption rate is calculated by dividing the num-
ber of reported robot interruptions by the number of robot
IPUs in a conversation.

Fig. [] shows response time histograms for the different
systems. The statistics are given in the first columns of
Table Since the response time data are not normally
distributed, we used the Mann-Whitney U test for between-
system comparisons. Despite the increased complexity of the
state space in the proposed system, there was no signifi-
cant difference between the proposed system and the floor-
instructed system (U = 4416,p = 0.503). The response
time of the vanilla system was longer than both the floor-
instructed system (U = 3156,p = 0.023) and the proposed
one (U = 3322,p = 0.016).

The perceived response speed was evaluated in the post-
interaction questionnaire using a visual analog scale (VAS).
As shown in Fig. [5] there was no significant difference
between the systems in terms of their deviation from the
origin.

Fig. [] shows box plots of the interruption rate. The
second column of Table [l shows the statistics. The vanilla
system has the largest interruption rate, followed by the floor-
instructed system and the proposed one.

Proposed ¢

Floor .

Vanilla |—,_I—‘—| ‘. ‘

40 60

-40 0 80
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Fig. 5: Perceived latency of different systems.
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Fig. 6: Box plot of robot interruption rate. The red line shows
the median, asterisks indicate significance (+: p < 0.1, *:
p < 0.05, x*: p < 0.01), and diamonds mark outliers.

The mean interruption rate of the vanilla system is 19.81%,
slightly worse than the baseline system (16.6%) evaluated
in [26]. Since both systems modeled floor transitions via
VAD and silence thresholds, it’s not surprising that they
had similar interruption rates. Our vanilla system responded
faster than the baseline system in [26] (median 2.7s), making
it more likely to interrupt the human.

The interruption rate data violate normality assumptions.
We employed the Wilcoxon signed-rank test to assess
between-system differences. The floor-instructed system had
significantly fewer interruptions than the vanilla system
(W = 28,p = 0.011). Both systems utilized static prompts.
The floor-instructed system’s prompt is longer, containing
instructions to identify human pauses and either remain silent
or produce BC during these pauses. Hence, the reduction
in interruption rate quantifies the improvement achievable
through prompt engineering alone.

The median interruption rate of the proposed system was
lower than the floor-instructed system. Although the p-value
was slightly above 0.05 (W = 38,p = 0.06), the direction
suggests that there is advantage to dynamic prompting. More
data is needed to establish the statistical reliability of this
effect.

Although the two results are not directly comparable as
the tasks were different, the mean interruption rate of our
proposed system (7.82%) is close to that reported in [26]
(6.9%). However, the response time of our proposed system
is much lower (mean 0.986s versus mean 1.5s).

In summary, the proposed system exhibits the best turn-
taking performance among the three, achieving the lowest
interruption rate without increasing response time.

B. Subjective Evaluations

Fig. 7] show box plots of the questionnaire results.

Q3 and Q6 directly evaluate robot interruptions. Compared
with the vanilla (green, W = 14.5,p = 0.025) and the
floor instructed systems (orange, W = 12,p = 0.009), the
proposed system (blue) is significantly better on Q6. Users
made less effort to adapt their speaking style, suggesting that
they were able to interact with the system more naturally. The
trend on Q3 also favors our proposed system. These results
are consistent with the interruption rate results above.

Q4 and Q5 evaluates human interruption of the robot. Our
proposed system is significantly better on Q4 than the floor-
instructed system (W = 30, p = 0.041). The trends favor the
proposed system over the other two on QS.

QL: The conversation with the | ™ Proposed

robot was fluent (1) | HHH Floor-instructed ¢ N % E

B Vanilla

Q2: The conversation flow was
similar to speaking with
a human (1)

Q3: | felt the robot interrupted
me frequently (1)

Q4: | felt | could interrupt the
robot when | wanted to (1)

Q5: The robot understood when
| wanted to take the floor
(e.g., speak up) (1)

Q6: | made an effort to adapt
my speech to avoid being
interrupted (1)

37

7
(Strongly Agree)

1
(Strongly Disagree) (Neutral)

Fig. 7: Box plot of subjective evaluation results. Arrows
indicate the preferred direction. Up: higher is better. Down:
lower is better. The red line marks the median. Asterisks
denote significance (+: p < 0.1, *: p < 0.05, **: p < 0.01).
Diamonds represent outliers.

. Floor Proposed
System Type | Vanilla Instructed | Total Pl P2 P3
# of Calls 15.22 15.33 21.05 0.11 822 1272

TABLE III: The average number of calls sent to the audio
LLM per conversation. For the proposed system, the calls
are further partitioned based on the prompt used.

Q1 and Q2 evaluate the system’s overall performance.
No trends or statistically significance differences were ob-
served. Intuitively, the fluency and human-likeness of the
semi-structured interview may depend more on high-level
behavior, rather than low-level turn taking. If this is true,
it is perhaps unsurprising that they were not significantly
different, since all systems used the same LLM and task
descriptions for response generation.

C. Modeling and Signaling of Floor transitions

The average number of LLM calls in each conversation is
listed in Table[ITI} The vanilla system and the floor-instructed
one had roughly the same number of calls. The proposed
system made more calls due to the elaborated state space.
The table also shows the average number of times each
prompt was used. P1 is used only when the human speaks
up while the robot is speaking. This happened only twice
during the experiment.

Coordinating turn-taking requires estimating the other
agent’s stance and signaling its perception thereof.

Ideally, to evaluate the accuracy of stance estimation, we
need to ask subjects report their stance at the offset of all of
their IPUs. Because this would be overly time-consuming,
we used human interruptions as a proxy for error, which we
identified by a specific IPU pattern following previous studies
[12]. As illustrated in Fig. we define a quick human
interruption (eg) as the onset of human IPU shortly after
(t € W) the robot assumes the speaking stance. Intuitively,
when ey happens, the robot has mis-perceived human stance
(g = Listening). The person is trying to re-gain the floor
because s/he hasn’t finished speaking (I = Speaking).
After W, we assume that the robot holds the floor, so the



True Stance: Iy = Speaking

| think... | | think it's bad

),!Righ = |
7 >t

Mis-perception: Q(—J

fH : Speaking — Listening W

Fig. 8: Illustration of a quick human interruption eg;, which
occurs when the onset of human IPU (¢;) falls within W.
Human speech shaded purple. Robot speech shaded blue.
Zigzag shade indicated canceled speech by the robot.

System Type Quick Human Interruption | Robot Interruption
Vanilla 31.50% 26.80%
Floor-Instructed 24.47% 26.04%
Proposed 18.57% 10.51%

TABLE IV: The percentages in the first column is the mean
quick interruption rate, computed for each conversation and
averaged over conversations. The percentages in the second
column is the mean ratio of human quick interruption events
(e ) that were reported by the subject as a robot interruption,
again averaged over conversations.

human onset is either backchanneling or an interruption,
rather than a signal of mis-perception by the robot.

Both the floor-instructed and the proposed system prompt
the LLM to output audio stream only when the human is
no longer speaking (g - Speaking — Listening). Let er
denote the event where the model decides to stream audio.
The quick human interruption rate, i.e., the number of ex
divided by that of eg, can then be understood as the error
rate of estimating human stance.

The first column of Table |IV|lists the mean quick human
interruption rate averaged over conversations. The vanilla
system had the highest rate followed by the floor-instructed
system. The proposed system had the lowest rate. These
results are consistent with the hypothesis that the proposed
system is more accurate at modeling floor transitions.

Stance estimation in human conversation isn’t perfect.
People signal their perception of the floor via behavioral
cues such as backchanneling and acknowledgement. These
cues allow the other party to recognize and resolve mis-
perceptions smoothly without interrupting the dialogue flow.

The proposed system adopts similar signaling. Typically
the robot starts with an acknowledgment (prompt P2), fol-
lowed by paraphrasing/repeating before moving on to the
next item. We expect these signals to facilitate the resolution
of misperceptions. If so, the proposed system should make
the human feel interrupted less often, even if it mis-perceives
the human stance.

We calculated the ratio of ey instances containing a robot
IPU Ilater reported to be an interruption by the subject. The
mean ratio of all three systems are shown in the second
column of Table As expected, compared to the baseline
and the floor-instructed system, a smaller portion of ey from
the proposed system evoked a feeling of interruption.

In summary, we found interruption related statistics con-

sistent with the hypothesis that the proposed system estimates
human stance more accurately and signals robot perception
of the floor more appropriately. However, there are limi-
tations to the use of ey to indicate robot mis-perception.
The human might decide to yield the floor even though the
robot’s decision to take it was inappropriate. This would
cause ey to under-estimate the mis-perception rate. Some
human interruptions could be backchannelling, which would
cause over-estimation.

VI. CONCLUSION

We propose a spoken dialogue system architecture for
humanoid robots based on an end-to-end audio LLM. A
novel dynamic prompting mechanism based on a 4-state floor
transition model coordinates turn-taking. An FSM tracks the
state of the conversational floor and composes LLM prompts
accordingly. Upon offset or timeout in human utterances,
prompts simultaneously update the floor state estimate and
generate robot responses. This elaborated modeling of floor
state and the signaling thereof based on human knowledge
improves the audio LLM’s ability to coordinate turn-taking.

There are several limitations of this study. In terms of
the experiments, our subject population is small. We only
considered one task. Also, we only evaluated the proposed
architecture with one audio LLM, GPT4o-realtime. Finally,
instead of manual annotation, an IPU-based proxy was
used to evaluate the accuracy of stance estimation and the
appropriateness of signaling.

Moving forward, the modeling of floor transitions can be
further improved. Currently, we use the same P3 prompt
for Fr = Free and Fr = Both and always stop robot
utterances upon human onset. Ideally, the robot’s behavior
should differ in these two states. For example, to navigate
conversation efficiently in the presence of human interjec-
tions, the robot may seek to hold the floor in Fr = Both to
push the conversation forward by not stopping its speech.

Future studies can explore how to manage context siz. We
observe that GPT4o is more likely to hallucinate as session
history grows, especially with repeated prompt change.

The system’s signaling of floor state estimate can also be
enriched. Currently the LLM selects backchannel cues from
a finite set of pre-recordings. Ideally the prosody of the BC
should also be context-dependent. Also, BC from a humanoid
robot should be multi-modal, including not only speech but
also facial expressions and gestures.
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